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Student Instructions

• Show your work and justify your answers for all questions unless stated otherwise.

• Organize your work in a reasonably neat and coherent way.

• Simplify your answers unless explicitly stated otherwise.

• Fill in circles completely. Do not use check marks, X’s, or any other marks.

• Calculators, notes, cell phones, books are not allowed.

• Use dark and clear writing: your exam will be scanned into a digital system.

• Exam pages are double sided. Be sure to complete both sides.

• Leave a 1 inch border around the edges of exams.

• The last page is for scratch work. Please use it if you need extra space.

• This exam has 9 pages of questions.



Midterm 3 (C) Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (a) (8 points) Suppose A is a real m×n matrix and b⃗ ∈ Rm unless otherwise stated. Select
true if the statement is true for all choices of A and b⃗. Otherwise, select false.

true false

⃝ ⃝ If A is an n× n real diagonalizable matrix, then A has n
distinct eigenvalues.

⃝ ⃝ If proju⃗(v⃗) = 0⃗, then {u⃗, v⃗} is linearly independent.

⃝ ⃝ If A = PDP−1 is diagonalizable and invertible, then A−1 is
diagonalizable with the same matrix D.

⃝ ⃝ If A has QR-factorization A = QR, then Nul(AT ) = Nul(QT ).

⃝ ⃝ If Ax⃗ = x⃗ and Ay⃗ = 2y⃗ then the matrix B = [x⃗ y⃗] has rank 2.

⃝ ⃝ Every 4× 4 real matrix A has a real eigenvalue.

⃝ ⃝ If U is an n× n orthogonal matrix, then UUT = In.

⃝ ⃝ If A is n× n and A has n distinct real eigenvectors,
then A is diagonalizable.



Midterm 3 (C) Make-up. Your initials:
You do not need to justify your reasoning for questions on this page.

(b) (4 points) Indicate whether the following situations are possible or impossible.

possible impossible

⃝ ⃝ A 2× 2 matrix A such that A is an orthogonal
matrix and det(A) = −1.

⃝ ⃝ A 3× 3 matrix in RREF that has exactly one pivot and
is not diagonalizable.

⃝ ⃝ A real 5× 5 matrix A whose eigenvalues are
precisely i, 1, 1 + i, 1− i, 0.

⃝ ⃝ A real 5× 5 matrix A with exactly two real eigenvalues,
and the two eigenspaces of A have dimension 2 and
dimension 3, respectively.

(c) (2 points) Which of the following are examples of a matrix A which satisfy the follow-
ing property. The matrix A is not diagonalizable while the matrix A2 is diagonalizable.
Select all that apply.

⃝
(
0 −1
0 0

)

⃝
(
0 1
1 0

)

⃝
(

0 1
−1 0

)

⃝
(
1 1
1 1

)
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2. (5 points) Consider A =

(
−1 −1
1 −1

)
, u⃗ =

(
1
1

)
. Sketch (a) the vector u⃗ and (b) the vector

Au⃗. Then, fill in the blanks for the following statements to make the statements true.

(a) the vector u⃗

x1

x2

(b) the vector Au⃗

x1

x2

(c) The transformation defined by A =
(

1 −1
−1 −1

)
is a rotation-dilation where the rotation is

through (degrees or radians counter-clockwise) and the scaling factor is .

(d) An eigenvector associated to the eigenvalue λ = −1+i of A is the vector x⃗ =

(
1

)
.

3. (3 points) Fill in the blanks so that the following statements are true. Let A = PDP−1

where

P =

 2 2 3
1 1 3
2 1 1

 D =

 3 0 0
0 4 0
0 0 3



(a) An eigenvector of A corresponding to eigenvalue λ = 4 is x⃗ =

 3

.

(b) The vector x⃗ =

2
1
2

 is an eigenvector of A corresponding to eigenvalue λ = .

(c) The characteristic polynomial of A is equal to .

You may leave your answer in factored form.
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4. (6 points) Fill in the blanks.

(a) Suppose u⃗ and v⃗ are vectors in Rn and that u⃗ · v⃗ = −4, ∥u⃗∥ =
√
6 and ∥v⃗∥ = 2

√
2.

Determine the length of 2⃗u− 3v⃗.

∥2u⃗− 3v⃗∥ =

(b) A 3× 2 matrix such that Col(A)⊥ is spanned by

 1
0
1

.

A =





(c) Write y⃗ = x⃗+ z⃗ as the sum of two vectors, where x⃗ in span{u⃗} and z⃗ is orthogonal to u⃗.

y⃗ =

(
5
3

)
u⃗ =

(
−1
1

)
x⃗ =

  z⃗ =
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5. (4 points) Let W be the subspace in R4 which is the set of solutions to the following homo-
geneous linear equation. Find dimW and an orthonormal basis for W⊥.

x1 − x2 + x3 − 3x4 = 0

dimW =

orthonormal basis for W⊥ is
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6. (4 points) The matrix A has the QR factorization A = QR. Find the least-squares solution
of the linear system Ax⃗ = b⃗ when

Q =
1

13

 5 12
0 0

−12 5

 , R =

(
1 −2
0 3

)
, b⃗ =

 5
3
1

 .

x̂=
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7. (4 points) Set A =

0 0
2 3
4 6

. Find a basis for each of the four fundamental subspaces Col(A),

Nul(A), Row(A) and Nul(AT ).

basis for Col(A) is

basis for Nul(A) is

basis for Row(A) is

basis for Nul(AT ) is
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8. (5 points) Show all work for problems on this page.

Find the vector x⃗ which is in W and closest to y⃗, where the subspace W is spanned by v⃗1
and v⃗2. Then, compute the distance from y⃗ to W .

y⃗ =


3
3
0
3

 , v⃗1 =


1
3
−1
1

 , v⃗2 =


3
−1
1
1

 .

x⃗=

dist(y⃗,W ) =
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9. (5 points) Show all work for problems on this page.

Compute the parameters α and β of the least-squares curve y = αx+β cos(πx
3
) that best fits

the data below.

x −2 0 1
y −1 0 2

α = β =



This page may be used for scratch work. Please indicate clearly on the problem if you
would like your work on this page to be graded. Loose scrap paper is not permitted.

This page must NOT be detached from your exam booklet at any time.
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