Math 2551 Final Review Fall 2023

Math 2550 students should work problems 1-18 only.

1. Find \mathbf{T}, \mathbf{N}, and the curvature κ for $\mathbf{r}(t)=3 \sin (t) \mathbf{i}+3 \cos (t) \mathbf{j}+4 t \mathbf{k}$.
2. Find the limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}-y^{2}+5}{x^{2}+y^{2}+2}$
3. True or False: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=5$ along the lines $x=a$ and $y=b$ and $f(a, b)=5$. Then f must be continuous at (a, b).
4. Find all second-order partial derivatives for $w=x \sin \left(x^{2} y\right)$
5. Evaluate $\frac{d w}{d t}$ for $w=2 y e^{x}-\ln (z)$ if $x(t)=\ln \left(t^{2}+1\right), y=\arctan (t), z=e^{t}$ at $t=1$.
6. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the surface $z^{3}-x y+y z+y^{3}-2=0$ at the point $(1,1,1)$.
7. Based on the contour plot below for a function $f(x, y)$, determine the sign $(+,-, 0)$ of
(a) $f_{x}(0,2)$
(b) $f_{y}(2,-2)$
(c) the rate of change of f at $(-2,0)$ in the direction towards $(-3,3)$
(d) $D f_{\langle 1 / \sqrt{2}, 1 / \sqrt{2}\rangle}(-1,-1)$
(e) the rate of change of f in the direction tangent to the level curve through $(0,1)$

8. Find the derivative of the function $f(x, y)=2 x y-3 y^{2}$ in the direction $4 \mathbf{i}+3 \mathbf{j}$ at the point $(5,5)$.
9. Find the tangent plane and normal line at $(2,0,2)$ of the surface $2 z-x^{2}=0$.
10. Find all local maxima, local minima, and saddle points for $f(x, y)=x^{2}+x y+y^{2}+3 x-3 y+4$.
11. Find the absolute maximum and minimum of $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ on the closed triangular region bounded by the lines $x=0, y=2$, and $y=2 x$.
12. Find the maximum value of $f(x, y)=49-x^{2}-y^{2}$ on the line $x+3 y=10$.
13. Write an iterated integral using (a) vertical cross-sections and (b) horizontal cross-sections whose region of integration is the region bounded by $y=\sqrt{x}, y=0, x=9$.
14. Sketch the region of integration and evaluate the integral $\int_{0}^{1} \int_{0}^{y^{2}} 3 y^{3} e^{x y} d x d y$.
15. Change to polar coordinates and evaluate the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} d y d x$.
16. Integrate the function $f(x, y, z)=3-4 x$ over the region below $z=4-x y$ and above the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$ in the $x y$-plane.
17. Find the volume of the region that lies inside the sphere $x^{2}+y^{2}+z^{2}=2$ and outside the cylinder $x^{2}+y^{2}=1$.
18. Use the change of coordinates $x(u, v)=\frac{u}{v}, y(u, v)=u v$ to evaluate the integral $\iint_{R}\left(\sqrt{\frac{y}{x}}+\sqrt{x y}\right) d A$, where R is the region in the first quadrant bounded by $x y=1, x y=9, y=x$, and $y=4 x$.
19. Evaluate the line integral $\int_{C}(x y+y+z) d s$ along the curve $\mathbf{r}(t)=2 t \mathbf{i}+t \mathbf{j}+(2-2 t) \mathbf{k}$ for $0 \leq t \leq 1$.
20. Find the flow of the field $\mathbf{F}=\langle-4 x y, 8 y, 2\rangle$ along the curve $\mathbf{r}(t)=\left\langle t, t^{2}, 1\right\rangle, 0 \leq t \leq 2$.
21. Find the counterclockwise circulation and the outward flux of the field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ around/through the unit circle centered at the origin.
22. Find the potential function for $\mathbf{F}=e^{y+2 z}(\mathbf{i}+x \mathbf{j}+2 x \mathbf{k})$.
23. Use Green's Theorem to find counterclockwise circulation and outward flux of the field $\mathbf{F}=\left\langle y^{2}-x^{2}, x^{2}+y^{2}\right\rangle$ for the curve C enclosing the region bounded by $y=0, x=3$, and $y=x$.
24. Let f be a function of three variables and let \mathbf{F} and \mathbf{G} be vector fields in \mathbb{R}^{3}. Which of the following expressions make mathematical sense? If you can compute any of them, do so.
(a) $\operatorname{curl}(\operatorname{div}(\mathbf{F}))$
(c) $\operatorname{div}(\mathbf{F} \cdot \mathbf{G})$
(e) $\operatorname{div}(\operatorname{curl}(\mathbf{G}))$
(b) $\operatorname{curl}(\nabla f)$
(d) $\operatorname{curl}(\operatorname{div}(f))$
(f) $\operatorname{div}(\nabla f)$
25. Use a parameterization to write a double integral for the area of the surface S which is the portion of the cone $z=2 \sqrt{x^{2}+y^{2}}$ between the planes $z=2$ and $z=6$.
26. Evaluate $\iint_{S} 2 y d \sigma$ over the surface S which is the part of the cylinder $y^{2}+z^{2}=4$ between $x=0$ and $x=3-z$.
27. Let S be the surface that consists of the part of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane and below the cone $z=3 \sqrt{x^{2}+y^{2}}$.
(a) Sketch S.
(b) Find a parameterization of S.
(c) Calculate the area of S.
28. Let S be the surface consisting of the top half $z \geq 0$ of the sphere $x^{2}+y^{2}+z^{2}=9$, together with the disk $x^{2}+y^{2} \leq 9, z=0$, its base in the $x y$-plane. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$, where $\mathbf{F}(x, y, z)=3 x y^{2} \mathbf{i}+3 x^{2} y \mathbf{j}+z^{3} \mathbf{k}$.
29. Let S be the part of the surface $z=4 x^{2}+y^{2}-4$ beneath the plane $z=5$. Let C be the bounding curve of S in the plane $z=5$, traversed counterclockwise and suppose S is oriented accordingly (normals towards the z-axis). Let $\mathbf{F}(x, y, z)=\left\langle 2 y, 4 x, e^{x}\right\rangle$. Use Stokes' Theorem to evaluate the curl integral

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

30. Let S be the surface of the cylinder defined by $y^{2}+z^{2}=4$ between the planes $x=-1$ and $x=3$. Let $\mathbf{F}(x, y, z)=e^{x y} \mathbf{i}+e^{x} y \mathbf{j}+e^{x} z \mathbf{k}$.
(a) Sketch S.
(b) Find a parameterization of S.
(c) Let \mathbf{n} be an outward pointing unit normal for S. Evaluate

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

by direct calculation (do not use the Divergence Theorem).

