

● ints: __________ ___________

Question 4:

Explaining the difference between a float and a double. Which is the default type?

Doubles are more accurate than floats.
(Double is the default type)
Doubles cannot be turned into floats

Question 5:
Is this allowed? Why or why not?

double x = 10.0;
float y = x;
System.out.println(y);

This is not allowed because it is a lossy conversion. Floats can be turned into doubles

Expressions:

Question 6:
What type of incrementing is this? What will be printed?

int x = 10;
int y = x++;
System.out.println("x is: " + x);
System.out.println("y is: " + y);

x is: 11
y is: 10

Postincrement

Question 7:
What type of incrementing is this? What will be printed?

int x = 10;
int y = ++x;
System.out.println("x is: " + x);
System.out.println("y is: " + y);

x is: 11
y is: 11
Preincrement

Question 8:
Trace the following code. What will be printed?

int x = 20;
int y = 10;
while (x > y) {

if (x % 2 == 0 || x % 5 == 0) {
x -= 3;
System.out.println("x is: " + x);

} else if (y > 0) {
y -= 2;
System.out.println("y is: " + y);

}

}

x is: 17
y is: 8
y is: 6
y is: 4
y is: 2
y is: 0
Continues to run

Question 9:
Write a program that takes in a string and capitalizes every even index character. The method
should return the final String

public String toUpperMethod(String x) {
String x = "georgia tech";
String y = "";
for (int i = 0; i < x.length(); i++) {

if (i % 2 == 0) {
y += Character.toUpperCase(x.charAt(i));

} else {
y += x.charAt(i);

}

}
System.out.println(y);
return y;

}

Question 10:
Turn the following into a ternary expression:

public boolean ternaryEx(String x) {
boolean isTrue;

if (x.length() % 2 == 0) {
isTrue = true;

} else {
isTrue = false;

}
return isTrue;

}

boolean isTrue = x.length() % 2 == 0 ? true : false;

Question 11:

Override the toString method for the following class:

public class Parent {
private int age;
private String name;

//implement the override here

public String toString() {
return "name : " + name + " age: " + age;

}

}

Question 12:
Based on problem 11, override the toString method for the following class:
Hint: is it possible to use the super keyword?

public class Child extends Parent {
private String childName;

//implement the override here

public String toString() {
return super.toString() + " child's name: " + childName;

}

}

Iterations and Math

Question 13:
Using printf formatting, print the following sentence:
my name is : maddy my age is 19 my GPA is -4.000

A few notes:
The float should be printed with 3 decimal places
The minimum width of the float should be 10

System.out.printf("my name is : %s my age is %d my GPA is %10.3f", "maddy",
19, -4.0);

Question 14:
What will the following code print out?
int[] intArray = new int[]{ 1,2,3,4,5,6,7,8,9,10 };

intArray[3] = 9.1;
for(int x : intArray) {

System.out.println(x);
}

Error bc 9.1 is not int

Question 15:

Write two ways to iterate through an array and print each item:

for (int y: x) {
System.out.println(y);

}

OR

for (int i = 0; i < x.length; i++) {
System.out.println(x[i]);

}

Question 16:

What will the following code print?

float a = -14.9f;
float b = 199.3f;
System.out.printf("The absolute value " + "of %.3f is %.3f%n", a,
Math.abs(a));
System.out.printf("The ceiling of " + "%.2f is %.0f%n",b,
Math.ceil(b));
System.out.printf("The floor of " + "%.2f is %.0f%n",b,
Math.floor(b));

The absolute value of -14.900 is 14.900
The ceiling of 199.30 is 200
The floor of 199.30 is 199

Question 17:

Write the code to generate an instance of the Random class and create variables int i,
double d, and boolean b. Use the instance of Random to assign these variables random
values:

Random random = new Random();

int i = random.nextInt();
double d = random.nextDouble();
boolean b = random.nextBoolean();

System.out.println(i);
System.out.println(d);

public Parent(int age, String name) {
this.age = age;
this.name = name;

}

//default age = 45
public Parent() {

this(45, “maddy”);
}

}

Question 23:
Write the default and full constructor for the class below:
Note: make the default child name your pet’s name.
Indicate where the default call to super occurs.

public class Child extends Parent {
private String childName;

public Child(int age, String name, String childName) {
super(age, name);
this.childName = childName;

}

public Child(String childName) {
super();

this.childName = childName;
}

}

Question 24:

What is wrong with the following code:

public class Parent {
//implementation
}

public final class Child extends Parent {
//implementation
}

public class Baby extends Child {
//implementation
}

Child class cannot be extended bc it has been label as final

Question 25:

List 3 differences between interfaces and abstract classes:

Question 26:

Create an interface with methods abstract methods display() and returnFinalNum() and
static method returnOriginalValue()

public interface InterfacePractice {

void display();

int returnFinalNum();

static int returnFinalNum() {
return FINAL_NUM;

}

}

public void display() {
System.out.println("this is display()\n name: " + name + " age: " + age);

}

Question 27:

Is this overriding, overloading, or neither
Answer: overriding

Public class Traveler {
Public void explore(String place, String name) {

//implementation
}

}

Public class Hiker extends Traveler {
Public void explore(String place, String name) {

//implementation
}

}

Same name but different parameters, overloading

Method signature (name and parameters) are same, it’s overriding

Question 28:

Parent is an abstract class.
True or false:
We can instantiate p. Why or why not? Could a subclass also be
instantiated?

Parent p = new Parent();

Answer: false - only concrete subclasses can be instantiated
Can we instantiate a child abstract class?
Answer: no

Abstract classes cannot be instantiated
Subclasses usually provide implementation for methods
Can be subclasses
Can have static fields and static methods

Question 29:

Trace the following code:
ArrayList<String> arr = new ArrayList<>();

arr.add("cs1301");
arr.add("cs1331");
arr.add(0,"cs1332");
arr.add(1,"cs2340");
arr.add(3, "cs1371");
System.out.println(arr);

[cs1332, cs2340, cs1301, cs1371, cs1331]

Big-O

Question 30:

What is the time complexity of this:

for(Integer number : numbers) {
if(number == comparisonNumber) {
return true;

}
}

O(n)

Question 31:

What is the time complexity of this method:

public static int returnLen(ArrayList<String> x) {
return x.size();

}

O(1)

Question 32:
What is the time complexity of this method?

private static void insertionSort(int[] elements) {
for (int i = 1; i < elements.length; i++) {
int elementToSort = elements[i];
int j = i;
while (j > 0 && elementToSort < elements[j - 1]) {
elements[j] = elements[j - 1];
j--;

}
elements[j] = elementToSort;

}
}

O(n^2)

JavaFX
Question 33:

Describe what the following code does:

TextField tf = new TextField();
button1.setOnAction(((ActionEvent event)-> {

String name = tf.getText();
System.out.println(name);
tf.clear();
nameLabel.setText(name);

}));

- Gets text from TextField
- Prints out text in terminal

button1.setOnAction(e-> {
System.out.println("hi");

});

VBox middleBox = new VBox();

middleBox.getChildren().addAll(button1, nameLabel);
pane.setCenter(middleBox);

1. Option 1

2. Option 2

3. Option 3

4. Option 4

Question 36:
Will this code run? If so, what will the ArrayList look like?

ArrayList<int> x = new ArrayList<>();
x.add(33);
x.add(2);
x.add(345);
x.add(45);
x.add(17);
x.remove(2);
System.out.println(x);

This is not allowed because ArrayLists need objects not primitives. (integer not ints)

Question 37:
Will this code run? If so, diagram what the following linked list will look like:

LinkedList<Integer> x = new LinkedList<>();
x.add(10);
x.add(25);
x.add(-30);
x.addFirst(1);
x.addFirst(-2);
x.removeFirst();
System.out.println(x);

[1, 10, 25, -30]
^This should be written as nodes

Question 38: Challenge:

Given an ArrayList of Integers, create a recursive method that iterates over each value and
returns a total. If the Integer value is an even number, add 2x the value to the total. Otherwise,
return the Integer’s actual value:
public static int returnLen(ArrayList<Integer> x) {

if (x.size() == 0) {
return 0;

} else {
Integer y = x.remove(0);
if (y.intValue() % 2 == 0) {

return 2 * y.intValue() + returnLen(x);
} else {

return y.intValue() + returnLen(x);
}

}
}

Question 39:

Identify if the following snippets of code are autoboxing or autounboxing:

int num = 8;

Integer num2 = num; //autoboxing

Character no = new Character(‘u’);

Character no_u = no; //autounboxing

Integer num = 10; //autoboxing

num.equals(12); //autoboxing

Integer num = 3; //autoboxing

num = num + 2; //autounboxing

Question 40:

T/F: If there is only one constructor for an object that takes in no parameters, then the object

must have no instance values. False, the object will still have the instance variables, they just

won’t be assigned a value when the object is created, unless it already had a predetermined

value.

Question 41:

Check the variable names that would follow naming conventions, if it doesn’t explain why:

_X_underTheFloorBoards

___IsLoveReal //Capitalized

___Am I Alive //Capitalized and spaces

_X_num_42

___12isTheBestNumber //Starts with a number

Question 42:

What is the output of the following code?

int num = 4;

System.out.println(++num – num++);

0

Question 43:

Looking at the conversions below, check which ones can be done implicitly and explain why the

conversion can or cannot be done implicitly:

___double -> int //64 bits -> 32 bits, lossy conversions

___char -> boolean //16 bits -> 1 bit, lossy conversion

_X_float -> double //32 bits -> 64 bits, no info lost

___long -> byte //64 bits -> 8 bits, lossy conversion

_X_int -> float //32 bits -> 32 bits, no info lost

Question 44:

What is val equal to after the following line of code?

int val = (3 + 8 == 10) ? 1 : 0;

0

7. Convert the following while loop into a for loop:

int i = 0;

while (i < 15) {

// loop body

i++;

}

for (int i = 0; i < 15; i++) {

// loop body

}

Question 45:
Looking at the following class hierarchy and code (you can assume that each class has an empty
constructor):

Student
/ \
V V

MEStudent AEStudent

Student s = new Student(); down

Student ae = new AEStudent(); down

MEStudent me = new MEStudent(); side

For each line of code below, state whether it compiles and/or executes:

MEStudent s1 = (MEStudent) s; //compiles, doesn’t execute

AEStudent ae1 = (AEStudent) ae; //compiles and executes

AEStudent ae2 = (AEStudent) me; //doesn’t compile or
execute

Student s1 = (Student) me; //compiles and executes

Question 46:

Using the same diagram above, these are the methods defined in each class (Note: remember that

all classes extends the Object class):

Student: receiveGrades(), study()

MEStudent: buildBridge(), equals()

AEStudent: buildPlane(), study()

Imagine we define an object:

Student st = new AEStudent();

For each of the methods below, state whether the st object can execute it, if it can, state the

specific implementation of which class its coming from:

buildPlane() //No

study() //Yes, implementation from AEStudent

equals() //Yes, implementation from Object

Question 47:

Say we have 2 interfaces Swimmable and Breathable. Now we try to define another

interface:

interface Huggable implements Swimmable, Breathable {

\\Code

}

Is there anything wrong with this?

Yes, interfaces can implement more than one interface, but when an interface is trying to

use another interface we use extends rather than implements.

Question 48:

Create an ArrayList named values that holds double values.

ArrayList<Double> values = new ArrayList<Double>;

Or

ArrayList<Double> values = new ArrayList<>;

Question 49:

T/F: Overriding is just another way of overloading.

False, overriding can only happen through inheritance, while overloading can happen with

or without inheritance.

Question 50:

If we had a Button named henry and we want it to do something when pressed, what are the

3 ways we can get it to do that?

Inner class, anonymous inner class, or lambda expression

Question 51:

What is the difference between HBox and VBox?

HBox holds nodes in a pane horizontally while VBox holds nodes in a pane vertically.

Question 52:

Coding: Create a class called Tag. Tag only has one private instance variable (String tag),

one constructor, and one method. The constructor should take in only one parameter (String

tag) and set it to the tag instance variable. The method called modify should return a

String. modify will go through the first half of the characters in tag and increment the

ASCII value of each by 1 and return this String (remember that String is immutable).

public class Tag {

private String tag;

public Tag(String tag) {

this.tag = tag;

}

public String modify() {

String newTag = “”;

for (int i = 0; i < tag.length() / 2; i++) {

newTag += (char) (tag.charAt(i) + 1);

}

tag = newTag;

return tag;

}

}

