Math 1552, Integral Calculus
 Practice Problems for Midterm \#2

Sections 6.1-6.2, 8.2-8.4
NOTE FROM THE INSTRUCTORS Please note that students are expected to also understand how to integrate with u-substitutions, as this technique may be needed in order to evaluate integrals from the above listed sections.

1. Content Recap

(a) The general formulas for finding the volume of a solid of revolution using the disk method are given by:
(b) The general formulas for finding the volume of a solid of revolution using the shell method are given by:
(c) In the disk method, the variable of integration \qquad the axis of rotation.
(d) In the shell method, the variable of integration is \qquad of the axis of rotation.
(e) Evaluate an integral using integration by parts if:

To choose the value of u, use the rule: \qquad
(f) To evaluate integrals with powers or products of trig functions, use the following trig identities to try to obtain a u-substitution:
(g) If we would evaluate an integral using trig substitution, the integral should contain an expression of one of these forms: \qquad or \qquad _-.

Write out the trig substitution you would use for each form listed above.
2. For each problem below, find the volume of the solid generated by revolving the region R about the given line.
(a) R is the region bounded by the curves $y=x^{3}, x+y=10$, and the line $y=1$; about the x-axis
(b) R is the region bounded by the curve $y=x^{2 / 3}+1$, the y-axis, and the line $y=5$; about the y-axis
(c) R is the region bounded by the curves $y^{2}=4 x$ and $y=x$; about the x-axis
(d) R is the region bounded by the curves $y=\sqrt{1-x^{2}}$ and $x+y=1$; about the x-axis
(e) R is the region bounded by the curves $y^{2}=4 x$ and $y=x$; about the line $x=4$
(f) R is the region bounded by the curves $y=\sqrt{x}$ and $y=x^{2}$; about the line $x=-2$
(g) R is the region bounded by the curves $y=\sqrt{x}$ and $y=x^{2}$; about the line $y=2$
(h) R is the region bounded by the curves $y=\sqrt{3} x, y=\sqrt{4-x^{2}}$, and $y=0$; about the y-axis
3. Evaluate the following integrals using any method we have learned.
(a) $\int \frac{x+2}{x+1} d x$
(b) $\int \sqrt{25-x^{2}} d x$
(c) $\int \tan ^{3}(x) \sec ^{4}(x) d x$
(d) $\int x \tan ^{-1}(x) d x$
(e) $\int \sin ^{2}(x) \cos ^{2}(x) d x$
(f) $\int\left(x^{2}+1\right) e^{2 x} d x$
(g) $\int \frac{d x}{x \sqrt{1+x^{2}}}$
(h) $\int \sin ^{3}(x) \cos ^{3}(x) d x$
(i) $\int x \sin (x) \cos (x) d x$
(j) $\int \sec ^{4}(x) d x$
(k) $\int \frac{8 d x}{x^{2} \sqrt{4-x^{2}}}$
(1) $\int \frac{8 d x}{\left(4 x^{2}+1\right)^{2}}$
(m) $\int x^{5} \cos \left(x^{3}\right) d x$
(n) $\int_{0}^{1} \ln \left(1+x^{2}\right) d x$
(o) $\int(2 x+3) 4^{-x} d x$
(p) $\int \frac{\sin ^{3}(x)}{\cos ^{7}(x)} d x$
(q) $\int \cot ^{3}(x) \csc ^{3}(x) d x$
(r) $\int \frac{d x}{e^{x} \sqrt{e^{2 x}-9}}$

Answers

2. (a) $\frac{3790}{21} \pi$
(b) 64π
(c) $\frac{32}{3} \pi$
(d) $\frac{\pi}{3}$
(e) $\frac{64}{5} \pi$
(f) $\frac{49}{30} \pi$
(g) $\frac{31}{30} \pi$
(h) $\frac{8 \pi \sqrt{3}}{3}$
3. (a) $x+\ln |x+1|+C$
(b) $\frac{25}{2} \sin ^{-1}\left(\frac{x}{5}\right)+\frac{x \sqrt{25-x^{2}}}{2}+C$
(c) $\frac{1}{4} \tan ^{4}(x)+\frac{1}{6} \tan ^{6}(x)+C$
(d) $\frac{x^{2}}{2} \tan ^{-1}(x)-\frac{x}{2}+\frac{1}{2} \tan ^{-1}(x)+C$
(e) $\frac{x}{8}-\frac{1}{32} \sin (4 x)+C$
(f) $\frac{1}{2}\left(x^{2}+1\right) e^{2 x}-\frac{1}{2} x e^{2 x}+\frac{1}{4} e^{2 x}+C$
(g) $-\ln \left|\frac{\sqrt{1+x^{2}}}{x}+\frac{1}{x}\right|+C$
(h) $\frac{1}{4} \sin ^{4}(x)-\frac{1}{6} \sin ^{6}(x)+C$
(i) $\frac{x}{2} \sin ^{2} x-\frac{1}{4} x+\frac{1}{8} \sin 2 x+C$
(j) $\tan (x)+\frac{\tan ^{3}(x)}{3}+C$
(k) $\frac{-2 \sqrt{4-x^{2}}}{x}+C$
(l) $2 \tan ^{-1}(2 x)+\frac{4 x}{4 x^{2}+1}+C$
(m) $\frac{1}{3} x^{3} \sin \left(x^{3}\right)+\frac{1}{3} \cos \left(x^{3}\right)+C$
(n) $\ln 2+\frac{\pi}{2}-2$
(o) $-4^{-x}\left[\frac{2 x+3}{\ln 4}+\frac{2}{(\ln 4)^{2}}\right]+C$
(p) $\frac{1}{4} \tan ^{4}(x)+\frac{1}{6} \tan ^{6}(x)+C$
(q) $-\frac{1}{5} \csc ^{5}(x)+\frac{1}{3} \csc ^{3}(x)+C$
(r) $\frac{\sqrt{e^{2 x}-9}}{9 e^{x}}+C$
