MATH 1554 READING DAY STUDY SESSION WORKSHEET

Problems

1. A 5×4 matrix $A=\left[\begin{array}{llll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}} & \overrightarrow{a_{4}}\end{array}\right]$ has all non-zero columns, and $\overrightarrow{a_{4}}=2 \overrightarrow{a_{1}}+3 \overrightarrow{a_{2}}+5 \overrightarrow{a_{3}}$. Find a non-trivial solution to $A \vec{x}=\overrightarrow{0}$.
2. For what values of h, if any, are the columns of A linearly dependent? $A=\left[\begin{array}{lll}1 & 0 & h \\ 0 & 1 & 1 \\ h & 1 & 0\end{array}\right]$
3. For what values of h is \vec{b} in the plane spanned by $\overrightarrow{a_{1}}$ and $\overrightarrow{a_{2}}$?

$$
\overrightarrow{a_{1}}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \overrightarrow{a_{2}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
1 \\
h
\end{array}\right]
$$

4. Express the solution to $A \vec{x}=\overrightarrow{0}$ in parametric vector form, where $A=\left[\begin{array}{llll}1 & 3 & 5 & 7 \\ 0 & 0 & 1 & 2\end{array}\right]$
5. Write down the standard matrix A of $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $T(\vec{x})=-\vec{x}$.
6. Find the domain and co-domain of the linear transformation T given by the standard matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
5 & 7 & 3 \\
2 & 5 & -1
\end{array}\right]
$$

Is this linear transformation one-to-one? Is it onto?
7. Let $A=\left[\begin{array}{cc}-5 & 2 \\ -1 & -3\end{array}\right]$. Find its eigenvalue(s) and find an invertible matrix P and a (rotation-scaling) matrix C such that $A=P C P^{-1}$.
8. W is the set of all vectors of the form $\left[\begin{array}{c}x \\ x+y \\ y\end{array}\right]$. Which of the following vectors are in W^{\perp} ?

$$
\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

9. Identify all values of a, b, c, if any, so that the columns of U are mutually orthogonal, $U=\left[\begin{array}{ccc}3 & 2 & 2 \\ -4 & 1 & b \\ 2 & a & c\end{array}\right]$.
10. Use the Gram-Schmidt process to construct an orthonormal basis of the column space of $A=\left[\begin{array}{cc}2 & 3 \\ 1 & 2 \\ -1 & -4\end{array}\right]$.
11. Let $A=Q R$, where $A=\left[\begin{array}{cc}1 & 4 \\ 2 & 5 \\ -2 & -2\end{array}\right], Q=\frac{1}{3}\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ -2 & 2\end{array}\right]$ Compute the upper triangular matrix R.
12. Give an example of a 2×2 matrix that is in echelon form, is orthogonally diagonalizable, but is not invertible.
13. Make a change of variable, $\vec{x}=P \vec{y}$, that transforms $Q(\vec{x})=3 x_{1}^{2}+4 x_{1} x_{2}$ into a form that does not have cross-product terms. Give P and the new quadratic form.
14. Construct a SVD of matrix $A=\left[\begin{array}{cc}3 & -3 \\ 0 & 0 \\ 1 & 1\end{array}\right]$
15. True or False?
(i) If the set of vectors $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly indepen- (xviii) Every real 3×3 matrix must have a real eigendent, so is every pair of vectors $\{\vec{u}, \vec{v}\},\{\vec{u}, \vec{w}\}$, and $\{\vec{v}, \vec{w}\}$. value.
(xix) For any three vectors \vec{x}, \vec{y}, and \vec{z} we have $(\vec{x} \cdot \vec{y}) \vec{z}=(\vec{y} \cdot \vec{z}) \vec{x}$.
(ii) If every pair of vectors $\{\vec{u}, \vec{v}\},\{\vec{u}, \vec{w}\}$, and $\{\vec{v}, \vec{w}\}$ is linearly independent, so is the set of vectors $\{\vec{u}, \vec{v}, \vec{w}\}$.
(xx) Let $\vec{x} \cdot \vec{y}>0$. Then the angle between \vec{x} and \vec{y} is less than 90°.
(iii) For any two vectors \vec{u} and \vec{v}, we have $\operatorname{Span}\{\vec{u}, \vec{v}\}=\operatorname{Span}\{\vec{u}, 2 \vec{u}+3 \vec{v}, 4 \vec{v}\}$.
(xxi) Every orthogonal set of nonzero vectors $\{\vec{x}, \vec{y}, \vec{z}\}$ is linearly independent.
(iv) If \vec{u} and \vec{v} are two distinct nonzero vectors, then there are exactly to vectors in $\operatorname{Span}\{\vec{u}, \vec{v}\}$.
(xxii) Let \hat{y} be the orthogonal projection of a vector \vec{y} onto the subspace $W \subset \mathbb{R}^{n}$. Then the transfor-
(v) The transformation given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} x_{2} \\ x_{2}\end{array}\right]$ is linear.
(xxiii) The inverse of an orthogonal matrix Q is Q^{T}.
(vi) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a projection onto the x_{1}-axis. (xxiv) A least square solution \hat{x} to $A \vec{x}=\vec{b}$ always satisThe range of T is \mathbb{R}^{2}. fies $A \vec{x}=\vec{b}$.
(vii) The transformation given by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=(x x v)$ A least square solution \hat{x} to $A \vec{x}=\vec{b}$ minimizes $\left[\begin{array}{c}x_{1}+1 \\ x_{2}\end{array}\right]$ is linear.
(viii) A linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ can be onto.
(xxvi) A $n \times n$ symmetric matrix A will always have n real and distinct eigenvalues.
(ix) The composition $S \circ T$ of two one-to-one linear maps is one-to-one.
(xxvii) A $n \times n$ symmetric matrix A will have algebraic multiplicity $=$ geometric multiplicity for each of
(x) The range of a one-to-one linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ may be a line. its eigenvalues.
(xxviii) If a matrix A is orthogonally diagonalizable,
(xi) The eigenvalues of a square matrix A are the same as the eigenvalues of its reduced row echelon form. then A^{k} is also orthogonally diagonalizable for all $k \in \mathbb{Z}^{+}$.
(xii) If \vec{u} and \vec{v} are eigenvectors corresponding to the (xxix) The eigenvalues of $A^{T} A$ are always real for any same eigenvalue λ, then every linear combination $\quad m \times n$ matrix A. of $a \vec{u}+b \vec{v}$ with $a, b \in \mathbb{R}$ (except the zero vector) is an eigenvector.
(xxx) A negative definite matrix cannot be invertible.
(xiii) The geometric multiplicity of an eigenvalue is less (xxxi) Matrices A and A^{T} have the same non-zero sinthan or equal to the algebraic multiplicity. gular values.
(xiv) All upper triangular 3×3 stochastic matrices are(xxxii) For any matrix $A, A^{t} A$ has non-negative, real not regular. eigenvalues.
(xxxiii) The maximum value of the quadratic form, $Q=$
(xv) If A is a diagonalizable matrix, then $\lambda=0$ is not $8 x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}$, for any $\vec{x} \in \mathbb{R}^{3}$, is 8 . an eigenvalue of A.
(xxxiv) If the number of non-zero singular values of a square matrix A equals the number of its columns,
(xvi) An $n \times n$ matrix with n distinct eigenvalues is then A is invertible. diagonalizable.
(xxxv) If A is an orthogonal matrix, then the largest singular value of A is 1 .
(xvii) If complex λ is an eigenvalue, then so is $-\lambda$.

Answers

1. $\vec{x}=(2,3,5,-1)$
2. None. The columns of A are linearly independent.
3. $h=3$
4. $\vec{x}=x_{2}\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}3 \\ 0 \\ -2 \\ 1\end{array}\right], \quad x_{2}, x_{4} \in \mathbb{R}$.
5. $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
6. Domain: \mathbb{R}^{3}, Codomain: \mathbb{R}^{4}, Not one-to-one, Not onto.
7. $\lambda=-4 \pm i, P=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right], C=\left[\begin{array}{cc}-4 & -1 \\ 1 & -4\end{array}\right]$
8. $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
9. $a=-1, b=7, c=11$
10. $\overrightarrow{v_{1}}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{l}8 \\ 5 \\ 9\end{array}\right], \operatorname{col}(A)=\operatorname{Span}\left\{\frac{\overrightarrow{v_{1}}}{\sqrt{6}}, \frac{\overrightarrow{v_{2}}}{2 \sqrt{2}}\right\}$
11. $R=\left[\begin{array}{ll}3 & 6 \\ 0 & 3\end{array}\right]$
12. $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
13. Eigenvalues are $-1,4, P=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right], Q=4 y_{1}^{2}-y_{2}^{2}$.
14. $U \Sigma V^{T}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{cc}3 \sqrt{2} & 0 \\ 0 & \sqrt{2} \\ 0 & 0\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\right)^{T}$
15. True/false:
(i) True
(ii) False
(iii) True
(iv) False
(v) False
(vi) False
(vii) False
(viii) False
(ix) True
(x) False
(xi) False
(xii) True

$$
\begin{aligned}
\text { (xiii) } & \text { True } \\
\text { (xiv) } & \text { True } \\
\text { (xv) } & \text { False } \\
\text { (xvi) } & \text { True } \\
\text { (xvii) } & \text { False } \\
\text { (xviii) } & \text { True } \\
\text { (xix) } & \text { False } \\
\text { (xx) } & \text { True } \\
\text { (xxi) } & \text { True } \\
\text { (xxii) } & \text { True } \\
\text { (xxiii) } & \text { True } \\
\text { (xxiv) } & \text { False }
\end{aligned}
$$

