MATH 2551 Reading Day Study Session - Fall 2017

1. Let S be the surface that consists of that part of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y$-plane, after we cut out the cone $z=3 \sqrt{x^{2}+y^{2}}$. We emphasize this is the part remaining after you cut out the cone, and you don't include the cone's area.
(a) Sketch S.
(b) Find a parametrization for the surface.
(c) Calculate the area of the surface S.
2. Let S be the surface consisting of the top half $(z \geq 0)$ of the sphere $x^{2}+y^{2}+z^{2}=9$, together with its base in the $x y$-plane, namely the disc $x^{2}+y^{2} \leq 9, z=0$. Use the divergence theorem to evaluate

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

where

$$
\mathbf{F}(x, y, z)=3 x y^{2} \mathbf{i}+3 x^{2} y \mathbf{j}+z^{3} \mathbf{k}
$$

3. Let S be that part of the surface $z=4 x^{2}+y^{2}-4$ beneath the plane $z=5$. Let C be the bounding curve of S in the plane $z=5$, traversed counterclockwise. Assume that S is oriented accordingly. Let $\mathbf{F}(x, y, z)=2 y \mathbf{i}=4 x \mathbf{j}+e^{x} \mathbf{k}$. Use Strokes' Theorem to evaluate the curl integral

$$
\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d \sigma
$$

4. Let S be the surface of the cylinder defined by $y^{2}+z^{2}=4$ between the planes $x=-1$ and $x=3$. Let $\mathbf{F}(x, y, z)=e^{x y} \mathbf{i}+e^{x} y \mathbf{j}+e^{x} z \mathbf{k}$.
(a) Sketch S.
(b) Find a parametrization for S.
(c) Let \mathbf{n} be an outward pointing normal from S. Evaluate

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

by calculation (do not try to use the divergency theorem).

MATH 2551 Reading Day Study Session - Fall 2017 (Solutions)

1. (a) - (b) $\mathbf{r}(\theta, r)=\left(r \cos \theta, r \sin \theta, 4-r^{2}\right) ; 0 \leq \theta \leq 2 \pi, 1 \leq r \leq 2$. (c) $\frac{\pi}{6}\left[17^{3 / 2}-5^{3 / 2}\right]$.
2. $\frac{1458}{5} \pi$
3. -27π
4. (a) - (b) $\mathbf{r}(\theta, x)=(x, 2 \cos \theta, 2 \sin \theta), 0 \leq \theta \leq 2 \pi,-1 \leq x \leq 3$. (c) $8 \pi\left(e^{3}-e^{-1}\right)$.
