CHEM 1212K Reading Day Problems

Ch. 14: Chemical Kinetics

- 1. True/false questions
 - a. T/F: The activated complex of a chemical reaction is an observable species.
 - b. T/F: Catalysts speed up reactions by increasing the frequency of collisions.
 - c. T/F: The slow step of a mechanism matches the rate law.
 - d. T/F: The overall reaction can match the rate law.
 - e. T/F: Catalysts can either appear as a product or as a reactant in a reaction mechanism.
 - f. T/F: Intermediates are allowed to be in a rate law.
 - g. T/F: Catalysts can appear in the rate law.
 - h. T/F: The forward and reverse rate constants are equal when a system is in equilibrium.
 - i. T/F: There is only one equilibrium position for every reaction at a given temperature. (Position meaning the concentrations of all the species).
 - j. T/F: A reaction stops when equilibrium is reached.
- 2. Express the units for rate constants when the concentrations are in moles per liter (M) and time is in seconds for (a) zero-order reactions; (b) first-order reactions; (c) second-order reactions.
- 3. In the reaction CH₃Br(aq) + OH⁻(aq) → CH3OH(aq) + Br⁻(aq), when the OH⁻ concentration alone was doubled, the rate doubled; when the CH₃Br concentration alone was increased by a factor of 1.2, the rate increased by a factor of 1.2. Write the rate law for the reaction.
- 4. The following data were collected for the reaction $2A(g) + 2B(g) + C(g) \rightarrow 3G(g) + 4F(g)$:

Initial concentration (mmol· L^{-1})

Experiment	$[A]_0$	[B] ₀	[C] ₀	Initial rate ((mmol G)·L ⁻¹ ·s ⁻¹)
1	10.	100.	700.	2.0
2	20.	100.	300.	4.0
3	20.	200.	200.	16
4	10.	100.	400.	2.0
5	4.62	0.177	12.4	?

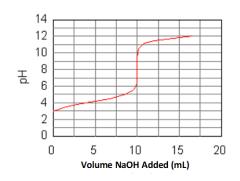
- a. What is the order for each reactant and the overall order of the reaction?
- b. Write the rate law for the reaction.
- c. Determine the reaction rate constant.
- d. Predict the initial rate for Experiment 5.

- 5. The biological half-life of a medication is the time required for the drug to lose half of its pharmacologic activity. The biological half-life of a new medication is 6.0 hours and its decay follows first-order kinetics. How long does it take for medication to lose 75% of is pharmacologic activity?
 - A) 0.0479 hours
 - B) 0.0834 hours
 - C) 2.31 hours
 - D) 2.49 hours
 - E) 12.0 hours
- 5. Given the data below, which of the following best represents the rate law for the overall reaction?

$$2A(g) + 3B(g) \rightarrow products$$
Experiment [A]₀ (M) [B]₀ (M) Initial rate (mol/L·s)

1 0.50 1.00 28.0

2 0.25 1.00 14.0


3 0.50 0.10 2.80

- A) rate = $k [A]^2 [B]^3$
- B) rate = $k [B]^3$
- C) rate = $k [A]^3 [B]^2$
- D) rate = k[A][B]
- E) rate = k [A]
- 6. Which statement or statements explain why collision rate is greater than reaction rate for a given chemical reaction?
 - I. Most collisions occur with an energy that is less than energy required to begin breaking bonds in reactants.
 - II. Collisions don't occur that frequently because there are no attractions between molecules of a gas.
 - III. Some collisions occur with orientations that are not conducive to product formation.
 - A) I only
 - B) II only
 - C) Both II and III
 - D) Both I and III
 - E) All of I, II, and III
- 7. What is the initial concentration of oxalate in experiment 4?

Experiment	Initial [HgCl ₂]	Initial $[C_2O_4^{2-}]$	Initial Rate of Formation of Cl ⁻ (mol L ⁻¹ min ⁻¹)
1	0.0836	0.202	0.52×10^{-4}
2	0.0836	0.404	2.08×10^{-4}
3	0.0418	0.404	1.06×10^{-4}
4	0.0316	?	1.27×10^{-4}

Ch. 17 Aqueous Equilibrium (Titrations, buffers, Ksp)

- 1. Which compound has the greatest molar solubility in pure water?
 - A) Al(OH)₃, $K_{sp} = 3 \times 10^{-34}$
 - B) PbS, $K_{\rm sp} = 9.04 \times 10^{-29}$
 - C) ZnS, $K_{sp} = 1.6 \times 10^{-24}$
 - D) Ag₂S, $K_{sp} = 8 \times 10^{-48}$
 - E) CuS, $K_{\rm sp} = 1.27 \times 10^{-36}$
- 2. Which solution is a buffer?
 - A) A solution that is 0.100 M in HNO₃ and 0.100 M in KNO₃
 - B) A solution that is 0.100 M NaCl and 0.100 M in NaNO₃
 - C) A solution that is 0.100 M in NH₃ and 0.100 M in KOH
 - D) A solution that is 0.100 M in NaOH and 0.100 M in CH₃COOH
 - E) A solution that is 0.100 M in NaNO₂ and 0.100 M in HNO₂
- 3. Which statement is true at the equivalence point of any acid/base titration?
 - A) The pH is 7.00
 - B) Moles of $OH^- = moles of H_3O^+$
 - C) Moles of $HA = moles of A^{-}$
 - D) Moles of analyte = moles of titrant
 - E) More than one of these statements is true
- 4. The curve for the titration of 50.0 mL of 0.0200 M C₆H₅COOH(aq) with 0.100 M NaOH(aq) is given below. What are the main species in the solution after 7.5 mL of base have been added?

- A) C₆H₅COOH(aq) and C₆H₅COO⁻(aq)
- B) C₆H₅COOH(aq) and NaOH(aq)
- C) NaOH and and C₆H₅COO⁻(aq)
- D) C₆H₅COOH(aq) only
- E) NaOH(aq) only
- 5. A buffer solution contains 0.0200 M acetic acid and 0.0200 M sodium acetate. What is the pH after 0.0020 mol of HCl are added to 1.00 L of this buffer? $pK_a = 4.75$ for acetic acid. Assume no change in volume.
 - A) 4.75
 - B) 4.70
 - C) 4.80
 - D) 4.84
 - E) 4.66
- 6. A 10.00 mL sample of HCl was titrated with 0.150 *M* KOH. If 15.00 mL of KOH was required to reach the equivalence point (stoichiometric point), then what was the concentration of the HCl?
 - A) 0.100 M
 - B) 0.150 M
 - (C) 0.200 M
 - D) 0.225 M
 - E) 0.250 M
- 7. A buffer solution of 100mL volume is 0.1 M CH3CO2H (aq) and 0.1 M NaCH3CO2 (aq).
 - a. What is the initial pH of the buffer?
 - b. What is the pH after the addition of 10 ml of 0.95 M NaOH (aq)

- 8. Suppose that 4.25 g of an unknown weak monoprotic acid is dissolved in water. Titration of the solution with 0.35 M NaOH (aq) required 52ml to reach the stoichiometric point. After the addition of 26ml, the pH of the solution was found to be 3.82.
 - a. What is the pKa for the acid?
 - b. What is the molar mass of the acid?

The molarity of CrO4²⁻ in a saturated Tl2CrO4 solution is 6.3e(-5) mol/L. What is the Ksp of Tl2CrO4?