Reading Day Problems CHEM1212

<u>Topic: Chapter 15. Chemical equilibrium (gas phase and aqueous phase; emphasis on LeChatelier's principle)</u>

1. Predict what will happen when the reaction **volume** is **decreased** in each of the following, after balancing the reactions.

a) ____ $CO_2(g) + ___ H_2O(I) \leftrightarrows __ C_6H_{12}O_6(s) + __ O_2(g)$ b) ___ $PCI_5(g) \leftrightarrows __ PCI_3(g) + __ CI_2(g)$ c) ___ $H_2(g) + __ CO_2(g) \leftrightarrows __ H_2O(g) + __ CO(g)$

2. Balance, the exothermic reaction below.

____NO₂ (g) ≒ ____N₂O₄ (g) Δ H = -58.0 kJ

Predict the effect of each of the following changes on this system at equilibrium (drive forward reaction, drive reverse reaction, no effect).

a) add N ₂ O ₄	b) remove NO ₂
c) increase the volume	d) decrease the temperature

e) Add N₂

3. The equilibrium constant, K_{P} , for the reaction

 $H_2(g) + I_2(s) \leftrightarrows 2 HI(g)$

is 0.35 at 25° C. Decide if each of the following mixtures is at equilibrium, at 25° C. If it is not at equilibrium, decide which way the reaction will proceed to reach equilibrium.

a) P_{H2} = 0.10 atm, P_{H1} = 0.90 atm and there is solid I_2 present

b) P_{H2} = 0.55 atm, P_{H1} = 0.44 atm, and there is solid I_2 present

c) $P_{H2} = 0.25$ atm, $P_{H1} = 0.15$ atm and there is solid I_2 present

4) Predict the effect of *increasing pressure* for each of the following equilibriums:

(a) $2H_2O_{(g)} + N_{2(g)} \leftrightarrow 2H_{2(g)} + 2NO_{(g)}$ (b) $SiO_{2(s)} + 4HF_{(g)} \leftrightarrow SiF_{4(g)} + 2H_2O_{(g)}$

```
(c) CO (g) + H<sub>2</sub>(g) \leftrightarrow C(s) + H<sub>2</sub>O (g)
```

TOPIC: Chapter 16: Acid-base (definitions, p calculations, salts/neutralization, strength/structure)

1) What are the three types of acids/bases and define them.

2) Determine the [OH⁻], [H₃O⁺], pOH and pH of a 0.01 mol/L KOH solution.

3) Determine the $[OH^-]$, $[H_3O^+]$, pOH and pH of a 0.045 mol/L HCl solution.

4)

What concentration of $Ba(OH)_2$ is needed to make an aqueous solution of pH 2.75 at 25 °C?

a. 0.0018 M *b*. 2.4 × 10⁻⁶ M *c*. 2.8 × 10⁻¹² M *d*. 5.6 × 10⁻¹² M *e*. 11.25 M

5)

Which of the following solutions are buffered?

a. 50.0 mL of 0.100 M NH₃(aq) + 50.0 mL of 0.100 M NH₄Cl(aq)

b. 50.0 mL of 0.100 M NH₃(aq) + 25.0 mL of 0.100 M HBr(aq)

c. 50.0 mL of 0.100 M HCN(aq) + 50.0 mL of 0.100 M NaCN(aq)

d. Both a & c.

e. All of a, b & c.