Ceres [20 pts]
The minor planet Ceres has a mass of $M=9 \times 10^{20} \mathrm{~kg}$ and a radius of 473 km . The Tycho Manufacturing company is working to create sustainable colonies in the Asteroid Belt, and Ceres is among their first locations. The first steps in the work involve sending raw materials from Ceres to the Anderson Space Station, located one million kilometers away, for processing into usable goods. In this problem, you can ignore the Sun and all the other objects in the Solar System.

1. [10 pts] Tycho engineers need to launch a 200 kg package of raw materials from Ceres to Anderson Station. How fast does the package need to be launched, if it needs to have a speed of $3 \mathrm{~m} / \mathrm{s}$ when it arrives at Anderson?

$$
\begin{aligned}
U_{g} & =\frac{m M G}{R} . \\
\Delta E & =\Delta u_{g}+\Delta K=0 . \\
\Delta u_{g} & =-(200 \mathrm{~kg})(9 e 20 \mathrm{~kg})\left(6.7 e-11 \mathrm{~m}^{2} \mathrm{~m}^{2} \mathrm{~m}^{2}\right)\left(\frac{1}{1 e 9 \mathrm{~m}}-\frac{1}{4.73 e 5 \mathrm{~m}}\right) \\
& =+2.55 e 7 \mathrm{~J} . \\
\Delta K & =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=-\Delta u_{g} \\
& \Rightarrow \frac{\frac{1}{2} m v_{f}^{2}+\Delta u_{g}}{\frac{1}{2} m}=\frac{\frac{1}{2} m v_{i}^{2}}{\frac{1}{2} m}
\end{aligned}
$$

$$
\Rightarrow v_{i}=\sqrt{v_{f}^{2}+\frac{2}{m} \Delta u_{g}}
$$

$$
=\sqrt{(3 \mathrm{man})^{2}+\frac{2}{200 \mathrm{~kg}}(2,55 e 75)}
$$


2. [10 pts] To send the package, Tycho engineers built a horizontal spring-loaded launching mechanism on Ceres. When the apparatus is ready to engage, the package is at rest and the spring is compressed a distance of 1.5 m . What is the stiffness of the spring?

The spring needs to have properties such that upon release, the package is traveling at $u=505 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
\Delta E & =\Delta u_{s}+\Delta K+\Delta u_{g}^{0}=0 \\
& \Rightarrow \frac{1}{2} k k_{s} s_{f}^{0}-\frac{1}{2} k s_{i}^{2}+\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{1}^{2}=0 .
\end{aligned}
$$

$v \equiv v_{i}$ from part 1

$$
\Rightarrow-\frac{1}{2} k s_{i}^{2}+\frac{1}{2} m v^{2}=0
$$

$$
\Rightarrow \frac{1}{2} k s^{2}=\frac{1}{2} m v^{2}
$$

$$
\begin{aligned}
& \frac{1}{2} k s^{2}=\frac{1}{2} m v^{2} \\
& \Rightarrow k=\frac{m v^{2}}{s^{2}}=\frac{(200 \mathrm{~kg})(505 \mathrm{~m} / \mathrm{s})^{2}}{(1.5 \mathrm{~m})^{2}} \\
&=2.27 e 7 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Bender [20 pts]
Bender is in space, far away from anything, and carrying a bag of swag. He tosses a plate of mass $m=2 \mathrm{~kg}$ with his right arm, and when the plate leaves his hand there's an angle $\theta=30$ degrees as seen in the figure.

View from side:


View from above:


Counterclockwise

Clockwise

1. [5 pts] Which direction will Bender rotate after tossing the plate, clockwise or counterclockwise? Explain using the angular momentum principle and the right hand rule.
$\vec{L}_{i}=\vec{L}_{f}$. Initially the robot and plate are motionless,
so $\vec{L}_{i}=0$. Immediately after the throw, the plate has translational angular momentum in the clockwise direction ( $\tau$ intortepage), so Bender must have angular momentum that rotates him counterclockwise ( $\tau$ out of the page in the above $v i e w)$ so that $\vec{L}_{f}=0$,
2. [10 pts] If the speed of the plate is $5 \mathrm{~m} / \mathrm{s}$ when Bender tosses it, and Bender's fully-extended arm is one meter long, what would be Bender's final angular momentum? Note that Bender's moment of inertia is 150 $\mathrm{kg} \mathrm{m}{ }^{2}$, and that there's an angle involved (see bottom part of the figure).

$$
\begin{aligned}
\vec{L}_{i}=\vec{L}_{f} \text { and } \vec{p}_{i}=\vec{p}_{f} \\
\begin{aligned}
\vec{L}_{f}=\vec{L}_{\text {rot }, B}+\vec{L}_{\text {trans }, B} & +\vec{L}_{\text {trans }, p}=0 \\
\Rightarrow \vec{L}_{\text {rot }, B}=-\vec{r}_{p} \times \vec{p}_{p} & =-|r \| p| \sin \theta(-\hat{y}) \\
& =r m v \sin \theta \hat{y} \\
& =(1 \mathrm{~m})(2 \mathrm{~kg})(5 \mathrm{~m} / \mathrm{s}) \sin \left(30^{\circ}\right) \hat{y} \\
& =5 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \hat{y}
\end{aligned}
\end{aligned}
$$

3. [5 pts] Bender's getting dizzy and wants to stop spinning now. The remaining swag in the bag has a mass of 4 kg . How fast and in which direction should he toss the remaining swag so that he stops rotating altogether?
The system is now Bender + sung.

$$
m_{3}=4 \mathrm{~kg}
$$

$$
\bar{L}_{i}=\vec{L}_{f}
$$

$$
\Rightarrow \vec{L}_{i}=\vec{L}_{\text {rot }, B+\operatorname{ang}}=5 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{s} \hat{4}
$$

$$
\Rightarrow \vec{L}_{\text {trans ,s }}=\vec{L}_{i}
$$

$\vec{L}_{\text {tow, }, ~}=\vec{r}_{s} \times \vec{p}_{s}=\left|r_{s}\right|\left|m_{s} v_{s}\right| \sin \theta \hat{y}$ Assuming Bender thous the sung at a right angle to his arm, $\left|r_{s} \| m_{s} v_{s}\right| \sin \left(90^{\circ}\right) \hat{y}=\vec{L}_{i}$

$$
\Rightarrow v_{s}=\frac{\left|\vec{L}_{i}\right|}{r_{s} m_{s}}=\frac{5 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{s}}{(1 \mathrm{~m})(4 \mathrm{~kg})}=1.25 \frac{\mathrm{~m}}{\mathrm{~s}} \text { to the right }
$$

Rods [20 pts]
A system is composed of four identical massless rods, each with length $d$ and four balls attached to the ends of each rod. Three of the balls have mass $M$ and the fourth one has mass $M / 4$. The system is free to rotate about its center, where the bars come together. You can think of the balls as point masses. Earth's gravity points in the usual direction $(-\hat{y})$.

(Figure 1)


(Figure 2)

1. [5 pts] What is the net torque on the system as shown in Figure 1, where the rods are oriented along the x and y axes?

Net torque is zero; horizontal bar's torques exactly cancel.
2. [ 5 pts ] You hold the system at rest after rotating it by a small angle $\theta$ counterclockwise (as shown in Figure 2). Then you let go. What will happen to the system now? Use the angular momentum principle to justify your answer.

The balls on the horitiontal bar coativice to cancel, and can be ignored. The top bally's torque is grater then the bottom bells targe, so it will rotate counterclockwise.
3. [10 pts] Determine the final angular momentum of the system $T$ seconds after letting it go from the initial configuration in Figure 2.

$$
\begin{aligned}
& \vec{\tau}=\frac{\Delta \vec{\tau}}{\Delta t} \Rightarrow \vec{L}_{f}=\vec{L}_{i}+\vec{\tau} \Delta t \\
& \begin{aligned}
\vec{\tau}_{1} & =M g d \sin \theta \hat{z}, \vec{\tau}_{2}=\frac{M q}{4} d \sin \theta(-\hat{z}) \\
\Rightarrow \vec{L}_{f} & =\overrightarrow{Z F}_{i}^{0}+\left(\vec{\tau}_{1}+\vec{\tau}_{2}\right) \Delta t \\
& =\left(M g d \sin \theta \hat{z}-\frac{M g}{4} d \sin \theta \hat{z}\right) T \\
& =\frac{3}{4} M g d T \sin \theta \hat{z}
\end{aligned}
\end{aligned}
$$

1. [1 pt] Write the equation for the Momentum Principle. To earn credit your equation must be fully correct.

2. [1 pt] Write the equation for the Energy Principle. To earn credit your equation must be fully correct.

## $\Delta E=\omega_{\text {ext }}+Q$

3. [1 pt] Write the equation for the Angular Momentum Principle. To earn credit your question must be fully correct.

$$
\widetilde{\tau}_{\text {net }}=\frac{\Delta \vec{L}}{\Delta t}
$$

4. [2 pts] The Lyman Alpha line appears in the emission line spectrum of hydrogen when the electron goes from the $N=2$ to the $N=1$ level, emitting a photon in the process. What is the energy of the Lyman Alpha photon?


- 13.6 eV


# PHYS 2211 Modern Final Review Worksheet - Reading Day Fall 2021 Worked Solutions 

## Curving Motion / Gravitation

## Problem 1

On the Earth, a rock of mass $m$ is tied to the end of a rope of length $R$. The rock is swung counterclockwise in a cirche of radius $R$ in a vertical plane (gravit points down). Consider the rock when the rope makes an angle of $\theta$ with the vertical, as shown in the diagram. At this location, the tension in the rope is a known quantity $T$ and the speed of the rock is decreasing.

(a 5pts) Is the perpendicular component of the net change in momentum for the rock zero? Explain briefly how you know this.
Sets $\left\{\left(\frac{d \vec{p}}{d t}\right)_{\perp} \neq 0 \quad \begin{array}{c}\text { because the wok is turning } \\ \text { (curving trajectory) }\end{array}\right\}$ pts
Also: $\left(\frac{d p}{d t}\right)_{\perp}=\frac{m v^{2}}{R}$, and $m \neq 0, v^{2} \neq 0, \quad R \neq 0$
(b 5pts) Is the parallel component of the net change in momentum for the rock zero? Explain briefly how you know this.

(c 7pts) Determine the parallel component of the net force on the rock in terms of the known quantities given in the problem statement.


$$
\begin{aligned}
\vec{F}_{\text {net }}^{/ /} & =\vec{F}_{S / 1}+\vec{T} / / 1= \\
& =\vec{F}_{S / 1}=
\end{aligned}
$$

$$
=-m g \sin \theta \quad \hat{p}
$$

(d pts) Calculate the speed of the rock in terms of the known quantities given in the problem statement.

$$
\begin{gathered}
\left(\overrightarrow{F_{\text {net }}}\right)_{\perp}=\left(\frac{d \vec{p}}{d t}\right)_{\perp} \\
{\overrightarrow{F_{\mathcal{I}}}+\overrightarrow{T_{\perp}}=\frac{m v^{2}}{R} \hat{n}}_{m g \cos \theta \hat{n}+T \hat{n}=\frac{m v^{2}}{R} \hat{n}}^{\frac{R}{m}(m g \cos \theta+T)=v^{2}} \\
v=\sqrt{R g \cos \theta+\frac{R T}{m}}
\end{gathered}
$$

$$
\left[\begin{array}{l}
-0,5 \\
-1.0 \\
-2,5 \\
-6,5
\end{array}\right]
$$

## Problem 2

a) A and $C$. At these points, $\mathrm{F}_{\text {Net }}$ and $\mathrm{F} \perp$ are in the same direction. So no parallel component.
b) None. There will always be force perpendicular to the motion because the motion is constantly curving.
c) D. We can rule out A and C because it will be 0 at those points. FBD below shows $\mathrm{F} \|$ is opposite the velocity at point $D$ and not point $B$.

d) None. The gravitational force never points away from the center of curvature.
e) C. Minimum radius of curvature occurs at this point, meaning greatest velocity.


Problem 3
(a 10pts) A bowling ball of mass $m$ is gently placed onto the un-stretched trampoline. After waiting a few seconds the bowling ball comes to rest and the trampoline is stretched an amount $d_{\text {static }}$. Taking the bowling ball as your system, how much work did the trampoline do as the ball traveled from $d=0$ to $d=d_{\text {static }}$ ?

$$
\begin{aligned}
& W_{t}=-\Delta u_{t} \\
& u_{t, f}=\frac{1}{4} k d^{4} \quad u_{t, i}=0
\end{aligned}
$$

$$
w_{t}=-\left(u_{t, f}-u_{t, i}\right)
$$

$$
=-u_{t, f}+u_{t, i}
$$

$$
=-\frac{1}{4} k d^{4}+0
$$

$$
W_{t}=-\frac{1}{4} k d^{4}
$$

Problem 3
Part (A) Alternative method!

$$
W_{\text {tramp }}=\int_{\vec{r}_{0}}^{\vec{T}} \overrightarrow{F_{\operatorname{tam}}} \cdot d \vec{r}
$$

$$
\begin{aligned}
& d! \\
& \vec{r}_{0}=0 \\
& \vec{\Gamma}_{1}=-d_{\text {static }}
\end{aligned}
$$

Ball moves moves $=\vec{\pi}=\vec{n}$
downward $=-2(-3)$

$$
W_{\text {tamp }}=\int_{0}^{-d_{\text {static }}}| | \vec{F}| | d \vec{r} \mid \cos \theta_{r}
$$

$$
I d r \text { IF }
$$

$$
\theta=180^{\circ}
$$

$$
=\int_{0}^{0}-\frac{-d s t a t i c}{-k y^{3}} d y
$$

$$
=-\left.\frac{1}{4} k y^{4}\right|_{0} ^{-d_{\text {static }}}
$$

$$
W_{\text {tramp }}=-\frac{1}{4} K\left(d_{\text {static }}\right)^{4}
$$

Part (b)
system: trampoline and bowling Ball External Forces $=\mathrm{N} / \mathrm{A}$ and Ear th

$$
\begin{aligned}
& \text { Not Work }=0 \\
& \vec{O}^{0}+Q^{\circ}=\Delta E=\Delta \hbar^{\circ}+\Delta U_{g}+\Delta U_{\text {tramp }} \\
& \Rightarrow \Delta U_{g}=\Delta U_{\text {tramp }}
\end{aligned}
$$

(b 15pts) In a different experiment, a bowling ball of mass $m$ is dropped from rest a height $h$ above the un-stretched trampoline ( $\mathrm{d}=0$ ). Determine the maximum stretch $d_{\text {max }}$ of the trampoline during the bounce of the bowling ball.

$$
\begin{aligned}
& \Delta V_{+}^{\prime} \Delta u_{g}+\Delta u_{t}=0 \\
& \Delta u_{g}=-\Delta u_{t} \\
& U_{g, i}=m g\left(h+d_{\text {max }}\right) \\
& u_{g, f}=0 \\
& s U_{g}=-m g\left(h+d_{\max }\right) \\
& u_{t, i}=0 \\
& u_{t, f}=\frac{1}{4} k d_{\text {max }}{ }^{4} \\
& \Delta u_{t}=\frac{1}{4} k d_{\text {max }}^{4} \\
& \Rightarrow \frac{1}{4} k d_{\max }^{4}=+m g\left(h+d_{\max }\right) \\
& \frac{1}{4} k d_{\text {max }}^{4}=+m g h+m g d_{\text {max }} \\
& \sqrt{d_{\text {max }}^{4}=\frac{4 m g h}{k}+\frac{4 m g}{R} d_{\text {max }}}
\end{aligned}
$$

Problem 4

(a 5pts) Choose your system to be the sphere only. As the sphere rolls down the hill, determine the work done on the real system.

$$
W=\vec{F} \cdot d \vec{r}
$$

3p15) $\left\{\begin{array}{l}\text { The only force that does work here is gravity. } \\ \text { Friction is present but does no }\end{array}\right.$ Friction is present but does no work on the real system. So:

$$
\begin{aligned}
& W=W_{S}=M g h \\
& * W=M g h \quad \text { Lets }
\end{aligned}
$$

(b 10pts) The sphere starts at the top of the hill from rest and rolls to the bottom. Determine the speed of the sphere when it reaches the bottom. Apply the energy principle on the real system consisting only of the sphere.

$$
\begin{gathered}
\Delta K_{\text {trans }}+\Delta K_{r o t}=W \\
\frac{1}{2} M\left(V_{f}^{2}-v_{i}^{2}\right)+\frac{1}{2} I\left(\omega_{f}^{2}-\psi_{i}^{2}\right)=M_{g} h \\
\frac{1}{2} M v_{f}^{2}+\frac{1}{2} I \omega_{f}^{2}=M_{g h}
\end{gathered}
$$

We know that $\omega=V / R$, so we have...

$$
\begin{array}{ll}
\frac{1}{2} M v_{f}^{2}+\frac{1}{2} I \frac{V_{f}^{2}}{R^{2}}=M g h & \\
M v_{f}^{2}+I \frac{v_{f}^{2}}{R^{2}}=2 M g h & -0.5 \\
V_{f}^{2}+\frac{I}{M R^{2}} v_{f}^{2}=2 g h & -1.5 \\
\left(1+\frac{I}{M R^{2}}\right) V_{f}^{2}=2 g h & -8.0 \\
V_{f}^{2}=\frac{2 g h}{1+\frac{I}{M R^{2}}} &
\end{array}
$$

For a solid sphere, $I=\frac{2}{5} M R^{2}$, so we get...

$$
\begin{gathered}
V_{f}^{2}=\frac{2 g h}{1+\frac{2 M M^{2} / 2}{5 M R^{2}}}=\frac{2 g h}{1+\frac{2}{5}}=\frac{2 g h}{7 / 5}=\frac{5}{7}(2 g h) \\
V_{f}^{2}=\frac{10 g h}{7} \\
A V_{f}=\sqrt{\frac{10 g h}{7}} \&
\end{gathered}
$$

(c 5pts) Determine the average frictional force acting on the sphere as it rolled to the bottom of the hill. Apply the energy principle on the point particle system consisting only of the sphere. You should use your
result from part (a).
(2pts) $\Delta K_{\text {trans }}^{\text {result from part }}=W_{g}+W_{\text {friction }}$

$$
\begin{aligned}
& \frac{1}{2} M v_{f}^{2}=M g h+\vec{f} \cdot d \vec{r} \\
& \frac{1}{2} M v_{f}^{2}-M g h=-f \sqrt{L^{2}+h^{2}} \\
& \frac{1}{4} M\left(\frac{10 g h}{7}\right)-M g h=-f \sqrt{L^{2}+h^{2}} \\
& \frac{5 M g h}{7}-M g h=-f \sqrt{L^{2}+h^{2}} \\
& \frac{-2 M g h}{7}=-f \sqrt{L^{2}+h^{2}} \\
& * f=\frac{2 M g h}{7 \sqrt{L^{2}+h^{2}}}
\end{aligned}
$$

friction acts along the dis placement hill in the down the hill, in of direction opposite ob movement

Note also, if $\theta$ is the angle of the slope/hill:

then $\frac{h}{\sqrt{L^{2}+h^{2}}}=\cos \theta$, and the friction can be expressed as:

$$
f=\frac{2}{7} M g \cos \theta
$$

(d 5pts) A second sphere with the same mass total $M$ and radius $R$ but with a hollow core is rolled down the hill. This hollow sphere will have a higher density then the solid sphere so that they have the same mass. Does it have a final speed (at the bottom) that is greater than, equal to or less than the soil sphere from part (a)? Briefly explain how you know this.
The solid sphere has its mass distributed all throughout its volume. In contrast, the hollow sphere has all its mass at the surface/outer edge (distance $R$ from center). This means that: I hollow $>$ Isolid $\rightarrow$ pts
In part (b) we saw that the final speed of the sphere depends on $I$ in this way:

$$
V_{f}^{2}=\frac{2 g h}{1+\frac{I}{M R^{2}}}
$$

When I is bigger, the denominator is bigger, and therefore $V_{f}$ becomes smaller. Thus, the hollow sphere will move slower than the solid sphere as it rolls down the hill.

$$
* V_{\text {hollow }}<V_{\text {solid }} * 2 p 13
$$

Energy graphs
Problem 5
(a 10pts) The block continues downward. When the bottom of the block is 0.3 m above the floor, what is its speed? (Consider the block, the spring and earth as the system).
Initial state: block © 0.8 m above floor (no contact with spring)
final state: block Q $L=0.3 \mathrm{~m}$ above $f l o 0 r$ (in contact with spring)

$$
\begin{gathered}
\Delta E=0 \Rightarrow \Delta k_{T}+\Delta u_{T}=0 \\
\Delta k_{b l o c k}+\Delta k_{\text {poring }}+\Delta k_{\text {garth }}+\Delta u_{\text {block-Earth }}+\Delta u_{\text {spring }}=0 \\
\left(k_{b f}-k_{b i}\right)+\left(u_{b f}-u_{b i}\right)+\left(u_{s f}-u_{f i}\right)=0 \\
\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)+m g(L-h)+\frac{1}{2} k\left(L-L_{0}\right)^{2}=0 \\
\frac{1}{2}(3)\left(v_{f}^{2}-2^{2}\right)+(3)(9.81)(0.3-0.8)+\frac{1}{2}(2000)(0.3-0.4)^{2}=0 \\
\frac{3}{2} v_{f}^{2}-6-14.715+10=0 \\
\frac{3}{2} v_{f}^{2}-10.715=0 \\
\frac{3}{2} v_{f}^{2}=10.715
\end{gathered}
$$

$$
v_{f}^{2}=\left(\frac{2}{3}\right)(10.715)
$$

(c 5pts) Sketch a graph of spring potential energy, gravitational potential energy, and the kinetic energy as a function of time.


Problem 6
(a 5pts) Determine the velocity of the rock the instant it reaches the surface of the Earth. Your answer should not be numeric.

$$
\begin{aligned}
& \text { 3pt } \rightarrow \Delta E=\Delta K+\Delta U=0 \\
& K_{f}-K_{i}+U_{f}-U_{i}=0 \\
& K_{f}+U_{f}=0 \\
& \frac{1}{2} m v^{2}+\frac{-G M m}{r_{f}}=0 \\
& \frac{1}{2} m v^{2}=\frac{G M p h}{1}
\end{aligned} \quad \begin{aligned}
\end{aligned} \quad \begin{aligned}
& v^{2}=\frac{1}{2} v^{2}=\frac{G M}{R} \\
& V=\sqrt{\frac{2 G M}{R}} \quad \begin{array}{l}
\text { direction: } \\
\text { towards center } \\
\text { of Earth }
\end{array} \\
&
\end{aligned} \quad \begin{aligned}
& \text { where: }
\end{aligned} \quad\left\{\begin{array}{l}
M=\text { mass of Earth } \\
R=\text { radius of Earth }
\end{array}\right.
$$

(b 5pts) For the case considered above, sketch the: Kinetic, Potential, and Total energy for the Earth+Rock system.

(c 10pts) Determine the velocity of the rock the instant it reaches the center of the Earth. Your answer should not be numeric.

$\checkmark$ system: only the rock
$\checkmark$ Initial: rock @ surface $(r=R)$
$\checkmark$ Final: rock @ center $(r=0)$

$$
\begin{aligned}
\checkmark W & =\int \vec{F} \cdot d \vec{r}=\int_{R}^{0} \frac{-m g r}{R} d r=\frac{-m g}{R} \int_{R}^{0} r d r= \\
& =\frac{-m g}{R}\left[\frac{r^{2}}{2}\right]_{R}^{0}=\frac{-m g}{\not R}\left(\frac{+R^{*}}{2}\right)=\frac{m g R}{2}
\end{aligned}
$$

$$
\begin{gathered}
\Delta E=\Delta K=W \\
K_{f}-K K_{i}=W \\
\frac{1}{2} m^{2}=\frac{p h g R}{2} \\
v^{2}=g R
\end{gathered}
$$

$$
\begin{aligned}
& -0.5 \\
& -1.5 \\
& -3.0 \\
& -8.0
\end{aligned}
$$

$$
v=\sqrt{g R}
$$

$\rightarrow$ direction: away from the center of the Earth
(d 5 pts) For the case of the rock falling through the Earth, the potential energy of the Earth+Rock system is given by $\mathrm{mgr}^{2} /(2 R)$. On the graph below, sketch the Kinetic, Potential and Total energy for the Earth + Rock system.


AV. (Extra credit 5pts) How does your answer to part (c) compare to your answer in part (a)? Hint: the ratio of the two velocities should not depend on any of the parameters in the problem.
$\checkmark$ What is $g ? \Rightarrow m g=\frac{G M m}{R^{2}} \Rightarrow g=\frac{G M}{R^{2}}$
$\checkmark$ Part A: $V_{A}=\sqrt{\frac{2 G M}{R}}$
$\checkmark$ Part: $v_{c}=\sqrt{g R}=\sqrt{\frac{G M}{R^{2}} R}=\sqrt{\frac{G M}{R}}$
$\Rightarrow$ Ratio: $\frac{v_{c}}{v_{A}}=\frac{\sqrt{6} M / R}{\sqrt{2 \sigma / M / R}}=\frac{1}{\sqrt{2}} \quad$ or $\frac{v_{A}}{v_{c}}=\sqrt{2}$

* The speed at crashing (Part A) is $\sqrt{2}$ times langer than the speed at the center of Earth (Part C).
(a) Moment of Inertia $=$

$$
I=\sum_{i 0} m_{i} r_{i}^{2}
$$

Where $r$ is the distance to for the axis of rotation to the cm of the object.

$$
\begin{array}{ll}
m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2} \\
m_{1}=2 M & m_{3}=M \\
r_{1}=a & r_{3}=\sqrt{b^{2}-a^{2}} \\
m_{2}=2 M & \\
r_{2}=a &
\end{array}
$$

$$
\begin{aligned}
& \left.(2 M)(a)^{2}+12 M\right)(a)^{2}+M\left(\sqrt{b^{2}-a^{2}}\right)^{2} \\
& 4 M a^{2}+M b^{2}-M a^{2} \\
& I=3 M a^{2}+M b^{2}
\end{aligned}
$$

(b) For rigid Body, $\vec{L}=$ Lw

By Angular momentum Principle

$$
\begin{aligned}
& \vec{L}_{f}=\vec{L}_{0}+\Sigma \tau \Delta t \\
& I \omega_{f}=\frac{T \vec{\omega}_{i}}{}+\tau_{a p p} \Delta t \\
& \tau_{\text {app }}=\frac{I \omega}{\Delta t}=\frac{\left(3 M a^{2}+M b^{2}\right) \omega}{\Delta t}
\end{aligned}
$$

Problem 8
ven.

$$
\begin{aligned}
& I=M r^{2}=2 m b^{2} \\
& \vec{L}_{\text {trans,B}}=I \vec{\omega}=2 m b^{2} \omega \text { (direction: into the page) } \\
& \Rightarrow \vec{L}_{\text {trans,B}}=-2 m b^{2} \omega \hat{Z}
\end{aligned}
$$

$$
\begin{aligned}
& -0.5 \\
& -1.5 \\
& -3.0 \\
& -8.0
\end{aligned}
$$

(either method)


$$
\begin{aligned}
\vec{L}_{\text {trans }, B} & =\vec{r}_{c m} \times m_{s y s} \vec{v}_{c m} \\
& =r_{c m} m_{s y s} v_{c m}(-\hat{z})
\end{aligned}
$$

always $90^{\circ}$ and by right-hand-rule, $\vec{r} \times \vec{v}$ points into the page $(-\hat{z})$

$$
\left.\begin{array}{rl}
\checkmark m_{\text {sys }} & =2 m \\
\checkmark v_{c m} & =\omega r_{c m}
\end{array}\right\} \Rightarrow \vec{L}_{\text {trans,B}}=\left(r_{c m}\right)(2 m)\left(\omega r_{c m}\right)(-\hat{z})=2 m \omega\left(r_{c m}\right)^{2}(-\hat{z})
$$

(b 5pts) If the total angular momentum for this system (about the point $B$ ) is zero, calculate the rotational angular momentum for the barbell about its center of mass. $\vec{L}_{r o t, c m}$ (magnitude and direction)

$$
\begin{gathered}
\vec{L}_{\text {total, } B}=\vec{L}_{\text {trans, } B}+\vec{L}_{\text {rot, cm }}=0 \\
\vec{L}_{\text {rot }, C m}=-\vec{L}_{\text {trans, } B} \\
\vec{L}_{\text {rot }, C m}=-\left(-2 m b^{2} \omega \hat{z}\right) \\
\vec{L}_{\text {rot, cm }}=2 \mathrm{mb}^{2} \omega \hat{z} \rightarrow 3 \text { pts }
\end{gathered} \rightarrow \text { 2pts }
$$

(c 5 pts) Calculate the moment of inertia $I$ for the barbell about its center of mass.

$$
I_{\text {caracal }}=(2 m)(d / 2)^{2}=\left(I_{m}\right)\left(\frac{1}{4} d^{2}\right)
$$

$$
I_{\text {baxdelal }}=\frac{1}{2} m d^{2}
$$

(d 5pts) Determine the unknown angular speed of the barbell about its center of mass.

$$
\begin{aligned}
& \checkmark \vec{L}_{\text {rot,cm }}=I_{\text {barbell }} \vec{\Omega}=\frac{1}{2} m d^{2} \vec{\Omega}=\frac{1}{2} m d^{2} \Omega \hat{z} \quad \text { (bic counterclockwise) } \\
& \checkmark \vec{L}_{\text {rot }, c m}=2 m b^{2} \omega \hat{z} \text { (from Part b) } \rightarrow \text { check for PoE } \\
& \Rightarrow \frac{1}{2} m d^{2} \Omega \hat{z}=2 m b^{2} \omega \hat{z} \\
& \quad \Omega=\frac{4 b^{2} \omega}{d^{2}} \longrightarrow 2 \text { pts }
\end{aligned}
$$

## Angular Momentum and Torque for a system with particles

## Problem 9

$$
\left|\begin{array}{ccc}
x & y & z \\
-10 & 0 & 0 \\
80 & 0 & -160
\end{array}\right| \begin{array}{ll} 
& x: 0(-16)-0(0)=0 \\
& y: 0(80)-(-10)(-160)=0-1600=-1600 \\
z:-10(0)-0(80)=0
\end{array}
$$

$$
\text { * } \left.\vec{L}_{3 A}=\langle 0,-1600,0\rangle \mathrm{kgm}^{2} / \mathrm{s}\right\rangle
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x & y & z \\
5 & 0 & 0 \\
-20 & -60 & 0
\end{array}\right| \\
& x: o(0)-o(-60)=0 \\
& y: 0(-20)-5(0)=0 \\
& z: 5(-60)-0(-20)=-300 \\
& \text { * } \vec{L}_{1}=\langle 0,0,-300\rangle \mathrm{kg}^{2} / \mathrm{s}
\end{aligned}
$$

(c 5pts) A race car drives clockwise around a circular track at a constant speed as seen in the figure. Determine the direction of the angular momentum of the car relative to the center of the track.
All Into the page
(d 5pts) How does the angular moment of the car, relative to the center of the track, change as the car goes from location 1 to location 2? Your answer should be supported by physics principles.


CL $=r p \sin \theta$
(21t)
Jor both (1) and (2), $L_{1}=r_{1} p_{1}$, $\theta=90^{\circ}$, so $r_{1}$ and $r_{2}$ are the same (ciccube track) (2): $\left.L_{2}=r_{2} p_{2}\right\} p_{1}$ and $p_{2}$ are the same (constant speed)

Therefore: $L_{1}=L_{2} \Rightarrow$ No change in angular momentum

* (3, 5 )
(e 5pts) A race car drives clockwise around an elliptical track at a constant speed, as seen in the figure. How does the angular moment of the car, relative to the center of the track, change as the car goes from location 1 to location 2? Your answer should be supported by physics principles.
$L=r_{p} \sin \theta$


For both (1) and (2), $\theta=90^{\circ}$, so $\sin \theta=1$.
(C) (1): $\left.L_{1}=r_{1} p_{1}\right\} p_{1}$ and $p_{2}$ are the same (constant speed)
(2): $\left.L_{2}=r_{2} p_{2}\right\} \begin{aligned} & r_{1} \text { and } r_{2} \text { are NDT the same. } \\ & r_{1} \text { is semiminor axis }\end{aligned}$
$\begin{aligned} & r_{1} \text { is semiminor axis } \\ & r_{2} \text { is semimajor axis }\end{aligned}>r_{1}<r_{2}$
Since $r_{1}<r_{2}$, then $L_{1}<L_{2}$
(1, 7
$\Rightarrow$ Angular momentum increased from point (1) to point (2)

*

Problem 10
(c 5 pts) What is the angular momentum of particle 2 relative to the origin?

$$
\begin{aligned}
& \text { (107) } \vec{L}=\vec{r} \times \vec{p} \\
& \begin{aligned}
& \vec{r}_{2} \times \vec{p}_{2}=m\left(\vec{r}_{2} \times \vec{v}_{2}\right)=\left[\left.\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
0 & 5 & 0 \\
-10 & 0 & -5
\end{array} \right\rvert\, \cdot 10 \frac{\mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}{}\right. \\
& 3 p t \mathrm{~s}\{
\end{aligned} \begin{cases}(-25) \hat{x}+(50) \hat{z}] 10 \mathrm{kgm}^{2} \mathrm{~s}\end{cases} \\
& =\langle-250,0,500\rangle \frac{k g h n_{s}^{2}}{s}
\end{aligned}
$$

(IA) $\vec{L}=\langle-250,0,500\rangle \frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{~s}}$
(d 10pts) What is the angular momentum of particle 3 relative to the location of particle 2?

$$
\begin{aligned}
& \vec{r}=\vec{r}_{2}-\vec{r}_{2}=\langle 0,0,5\rangle m-\langle 0,5,0\rangle m \\
& \vec{r}=\langle 0,-5,5\rangle m \\
& \vec{r}=\vec{V}_{3}=\langle 0,0,-10\rangle \mathrm{m} / \mathrm{s} \quad \\
& \vec{V} \quad \begin{array}{l}
-0,5 \\
-1.5 \\
-3.0 \\
-8.0
\end{array}
\end{aligned}
$$

$$
|\vec{r} \times \vec{v}|=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
0 & -5 & 5 \\
0 & 0 & -10
\end{array}\right|=\hat{x}(50)
$$

$$
\begin{gathered}
\vec{L}=m_{3}|\vec{r} \times \vec{v}|=(15)\langle 50,0,0\rangle \mathrm{ky} / \mathrm{s} / \mathrm{s} \\
\vec{L}=\langle 750,0,0\rangle \frac{\mathrm{kg} \mathrm{~m}^{2}}{\mathrm{~s}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (c) } \vec{L}_{\text {tot }}=\vec{L}_{\text {trans }}+\vec{L}_{\text {rot }} \\
& =\vec{r}_{c m} \times\left(\overrightarrow{p_{1}}+\vec{p}_{2}+\overrightarrow{p_{3}}\right)+\left(\vec{r}_{2, \mathrm{~cm}} \times \vec{p}_{1}+\vec{r}_{2 . \mathrm{cm}} \times \vec{p}_{2}+\vec{r}_{2 . c \mathrm{~cm}} \times \vec{p}_{3}\right)
\end{aligned}
$$

so we need $\vec{r}_{\mathrm{cm}}$ vector.

$$
\begin{aligned}
& \vec{r}_{c m}=\frac{\sum_{0} m_{i} \vec{f}_{i}}{\sum_{i=0} m_{2}}=\frac{m_{1} \vec{r}_{1}+m_{2} \overrightarrow{r_{2}}+\vec{m}_{3} \overrightarrow{r_{3}}}{m_{1}+m_{2}+m_{3}} \\
& \vec{r}_{\mathrm{cm}}=\frac{\langle 25,0,0\rangle+\langle 0,50,0\rangle+\langle 0,0,75\rangle \mathrm{kg} \cdot \mathrm{~m}}{5+10+15} \mathrm{~kg} \\
& \vec{r}_{c m}=\left\langle\frac{5}{6}, \frac{5}{3}, \frac{5}{2}\right\rangle \\
& \begin{aligned}
& \vec{L}_{\text {tans }}=\left\langle\frac{5}{6}, \frac{5}{3}, \frac{5}{2}\right\rangle \times\left(m_{1} \vec{V}_{1}+m_{3} \vec{V}_{2}+m_{3} \vec{V}_{3}\right) \\
&\langle 25,-50,75\rangle=\overrightarrow{p_{1}}
\end{aligned} \\
& +\langle-100,0,-50\rangle=\overrightarrow{P_{a}} \\
& +\langle 0,0,-150\rangle=\overrightarrow{p_{2}} \\
& \pi=\left\langle\frac{5}{6} \frac{5}{3}, \frac{5}{3}\right\rangle m \times\langle-75,-50,-125\rangle \mathrm{kg} \cdot \frac{\pi}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{L}_{\text {cans }}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{5}{6} & \frac{5}{3} & \frac{5}{2} \\
-75 & -50 & -125
\end{array}\right|=\left(\left(\frac{5}{3} \cdot-125\right)-\left(\frac{5}{2}-150\right)\right) \hat{\imath} \\
& \\
& -\left(\left(\frac{5}{6}-125\right)-\left(\frac{5}{2} \cdot-75\right)\right) \hat{\jmath} \\
& \\
& +\left(\left(\frac{5}{6}-50\right)-\left(\frac{5}{3}-75\right)\right) \hat{k} \\
& \vec{L}_{\text {trans }}=\left\langle-\frac{250}{3}, \frac{-250}{3}, \frac{250}{3}\right\rangle
\end{aligned}
$$

Now for $\vec{L}_{\text {rot }}$

$$
\begin{aligned}
& \vec{r}_{1, c m}=\langle 5,0,0\rangle-\left\langle\frac{5}{6}, \frac{5}{3}, \frac{5}{2}\right\rangle=\left\langle\frac{25}{6},-\frac{5}{3}, \frac{-5}{2}\right\rangle \\
& \vec{r}_{2, c m}=\langle 0,5,0\rangle-\left\langle\frac{5}{6}, \frac{5}{3}, \frac{5}{2}\right\rangle=\left\langle\frac{5}{6}, \frac{10}{3},-\frac{5}{2}\right\rangle \\
& \vec{r}_{0, c m}=\langle 0,0,5\rangle-\left\langle\frac{5}{6}, \frac{5}{3}, \frac{5}{2}\right\rangle=\left\langle-\frac{5}{6},-\frac{5}{3}, \frac{5}{2}\right\rangle \\
& \begin{aligned}
\vec{r}_{1}, \text { can } \times \vec{p}_{1}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{25}{6}, & -\frac{5}{2}, & \frac{-5}{2} \\
25 & -50,75
\end{array}\right|= & \left(\left(\frac{-5}{3} \cdot 75\right)-\left(\frac{-5}{2} \cdot-50\right)\right) \hat{\jmath} \\
& -\left(\left(\frac{25}{6} \cdot 75\right)-\left(\frac{-5}{2} \cdot 25\right)\right) \hat{\jmath} \\
& +\left(\left(\frac{25}{6} \cdot-50\right)-\left(-\frac{5}{3} \cdot 25\right)\right) \hat{k}
\end{aligned} \\
& \overrightarrow{r_{2}} \vec{p}_{2}=\left\lvert\, \begin{array}{cc}
\hat{\imath} & \hat{\jmath} \\
\hat{k}
\end{array}{ }^{\prime}=\langle 0,-375,-166.7\rangle\right. \\
& \overrightarrow{\vec{r}}_{2 \times 1} \times \vec{p}_{2}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{-5}{6} & \frac{10}{3} & \frac{-5}{2} \\
-100 & 0 & -50
\end{array}\right| \begin{array}{l}
\left(\left(\frac{0}{3} \cdot-50\right)-0\right) \hat{\imath} \\
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\langle 166.7,208.3,333.3\rangle \\
& \vec{f}_{3, \mathrm{~cm}} \times \vec{p}_{3}=\left|\begin{array}{ccc}
\hat{1} & \hat{\jmath} & \hat{k} \\
1 & \frac{5}{6} & -\frac{5}{3} \\
\frac{5}{2} \\
0 & 0 & -150
\end{array}\right|=\begin{array}{cc}
\left(\left(-\frac{5}{3} \cdot-150\right)-0\right) & \hat{\imath} \\
-\left(\left(-\frac{5}{4} \cdot-150\right)-0\right) & \hat{\jmath} \\
& +(0-0) \hat{k}
\end{array} \\
& =\langle 250,-125,0\rangle
\end{aligned}
$$

Now the total $L$ can be found by summing all boxed values.

$$
L_{\text {Fo }}=\left\langle\frac{1000}{3},-375,250\right\rangle \mathrm{kg} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

* A lot of calculations here... I may have made an error somewhere along the way. The important part is the process!

Problem 11
Check each choice Individually
A) Object two has same Mass distributed farther from center of Mass, so $I_{2}>I_{1}$
B) Object two has much less Mass. In fact, object 1 contains object two but has additional mass b/w center and surface. Adding Mass increases I
so $I_{1}>I_{2}$
C) Similar logic to chicle b. Object 2 more massive, same geometry so, $I_{2}>I_{1}$
D) object 1 object 2

'axis
The mass is clearly distributed further from the axis in object 2, so $I_{2}>I_{1}$
E) By the parallel axis theorem,
$I=I_{0}+M d^{2}$, where $I_{0}$ is moment about center of mass.
Therefore, an axis passing through center of mass is minimum for all parallel axes, regardless of object geometry. so $I_{2}<I_{1}$
Answer:

$$
A, C, D \quad I_{2}>I_{1}
$$

Problem 12
Problem 12
conservation of linear momentum

$$
\begin{aligned}
& m_{1} v=\left(m_{1}+m_{2}\right) V_{c m} \\
\Rightarrow & V_{c m}=\frac{m_{1} v}{m_{1}+m_{2}}
\end{aligned}
$$

Conservation of angular momentum

- Use center of mass at time of collision as the reference point

$$
\begin{aligned}
& r_{1} \int_{\mathrm{cm}}^{\Delta m_{1}} \Rightarrow r_{1}=\frac{m_{2}}{m_{1}+m_{2}} l \\
& r_{2} l \\
& r_{2}=\frac{m_{1}}{m_{1}+m_{2}} l
\end{aligned}
$$

Note: cm is not in the middle of the rod unless $m_{1}=m_{2}$

Initial angular momentum

$$
\begin{aligned}
& L_{i}=r \times p=m_{1} V r_{1}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} V q \\
& L_{f}=I_{\text {lombell }} \omega=\left(m_{1} r_{1}^{2}+m_{2} l_{2}^{2}\right) \omega=\frac{m_{1} m_{2}}{m_{1}+m_{2}} l^{2} \omega \\
& L_{i}=L_{f}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} V l=\frac{m_{1} m_{2}}{m_{1}+m_{2}} l^{2} \omega \Rightarrow \frac{V}{l}=\omega
\end{aligned}
$$

Now construct final $K E$

$$
\begin{aligned}
& K E_{f}=K E_{\text {tres }}+K E_{\text {rot }}=\frac{1}{2}\left(m_{1}+m_{2}\right) V_{c m}^{0}+\frac{1}{2} I \omega^{2} \Rightarrow \\
& \quad \frac{1}{2}\left(m_{1}+m_{2}\right)\left(\frac{m_{1} V}{m_{1}+m_{2}}\right)^{2}+\frac{1}{2}\left[\frac{m_{1} m_{2}}{m_{1}+m_{2}} L^{2}\right]\left(\frac{V}{i}\right)^{2} \Rightarrow \frac{1}{2} m_{1} V^{2}=K E_{i}
\end{aligned}
$$

Problem 4


$$
\Delta E=0=\Delta K E_{\text {tans }}+\Delta K E_{G+}+\Delta U
$$

OR
Initial
Final

$$
\begin{aligned}
& k E_{\text {rot }, i}+K E_{\text {kans }, i}+U_{i}=U_{f}+k E_{\tan ; f}+k E_{\text {rot }} \\
& k \frac{q_{1} q_{2}}{\left|\vec{r}_{\text {Source }} \vec{r}_{1}\right|}=\frac{-k q_{1} q_{2}}{\left|\vec{r}_{\text {score }}-\vec{r}_{2}\right|}+\frac{1}{2} m|\vec{v}|^{2}+\frac{1}{2} I w^{2} \\
& \frac{\frac{k q_{1} q_{2}}{\left|\vec{r}_{\text {suorce }}\right|}-\frac{k q_{1} q_{2}}{\left|\vec{r}_{\text {source }}-\vec{r}_{2}\right|}-\frac{1}{2} \frac{|\vec{p}|^{2}}{M}}{\frac{1}{2}\left(\frac{2}{5} M q^{2}\right)}=\omega^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{k q_{1} q_{2}\left(\frac{1}{\mid \vec{r}_{\text {sacrcot }}}-\frac{1}{\left|\vec{r}_{\text {sanee }}-\vec{r}_{2}\right|}\right)-\frac{1}{2} \frac{|\vec{p}|^{2}}{M}}{\frac{1}{5} M R^{2}} \\
& {\left[( 9 \cdot 1 0 ^ { 1 } \frac { \mathrm { kg } \cdot \mathrm { m } ^ { 3 } } { \mathrm { s } ^ { 2 } \cdot \mathrm { C } ^ { 2 } } ) ( 2 \cdot 1 0 ^ { - 3 } \mathrm { C } ) ( - 2 \cdot 1 0 ^ { - 3 } \mathrm { C } ) \left(\frac{1}{\sqrt{1^{2}+1^{2} m}}-\frac{1}{\left.\left.\sqrt{(1-.25)^{2}+(1-.5)^{2} m}\right)\right]}\right.\right.} \\
& -\frac{1}{2} \frac{\left(120^{2}+120^{2}\right)}{1 k g}\left(\frac{k g . m}{s}\right)^{2} \\
& \frac{1}{5}(1 \mathrm{~kg})(.2 \mathrm{~m})^{2} \\
& \Longrightarrow 10321.3=\omega^{2} \\
& \omega=101.6 \frac{\mathrm{rod}}{\mathrm{~s}}
\end{aligned}
$$

